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and let V (4 be a positive-definite Liapunov function satisfying the condition V,*F ~0. 
The control law U = - AGTV, 

quarantees the asymptotic stability of the system with respect to the variables y,== Ye, 

. -*T Yr = yr, (5) with the functional 

I(W)&$T GAGTI’, + uTA%) dt 

0 

assuming its minimum value, provided that the function v~TGAGT~,~ is positive-definite 
with respect to gr, . . ,, y,. 
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A solution for a weakly nonself-similar axisymmetric jet submerged in a rotating 
viscous incompressible fluid is derived in a boundary layer approximation. An 
asymptotic expression is obtained for the jet field at considerable distances from 
the source, where it becomes self-similar. 

1, Let a half-space filled by a viscous incompressible fluid and its solid plane bound- 
ary rotate at constant angular velocity o around an axis normal to that plane. 

We attach to the solid plane a right-hand system of cylindrical coordinates r, 9, z 
and make the half-space boundary to coincide with the plane z = 0 so that for every 
point of the fluid z > 0. Let us consider the problem of slow steady axisymmetric rela- 
tive motions of the fluid in the half-space, induced by the velocity distribution at the 
solid plane 

v IWO = ezwO (r) (1.1) 

with conditions at infinity 
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v + 0, r--*00 (1.2) 

We shall consider the case when function wo (r) is finite and its three-dimensional 

scale L is considerably greater than the thickness of the Ekman boundary layer, i.e. 

L* IfvIo (1.3) 

Coriolis forces impede the motion of fluid in the direction normal to the axis of rota- 
tion and, according to the estimates presented in [I], when condition (1.3) is satisfied a 
boundary layer of the jet which spreads along the z-axis is formed. The system of line- 

arized equations of the jet boundary layer in a rotating fluid in the axisymmetric case 
is of the form [l] 

(1.4) 

aru arw 
, x+r=O, h- $f@ 

where U, V, w are velocity components of the fluid in the right-hand cylindrical sys- 
tem of coordinates attached to the rotating solid plane, p is the pressure, P the density 
and Q, is the potential of the centrifugal force field. 

The suction of fluid into the jet induces a flow over the solid plane whose longitudinal 
scale is - L. This flow is directed along the normal to the axis of rotation and,conse- 
quently, the Coriolis and viscous forces are substantial in it. Equating the orders of mag- 
nitude of the latter we find that the scale of flow in the z-direction is - If/yl Thus, 

when condition (1.3) is satisfied, a boundary layer is formed on the solid plane. In a li- 
near approximation the velocity field for z < vvx represents the superposition ofthe 

jet field on the boundary layer at the solid plane. Since the a,-component of velocity 
in the layer at that plane is appreciably smaller than in the jet field, it is possible to 

assume that approximately w lr* = IL% (r) (1.5) 

where UI is the z-component of velocity in the jet field. 

The problem of determining the field of a weak jet submerged in a rotating fluid re- 
duces to the integration of Eqs. (1.4) with boundary conditions (1.2) and (1.5). 

2, The direct substitution into equations shows that system (1.4) admits particular 
solutions of the form vkz 

u=A- 2m JI (kr) e-‘*, v = - AJI (kr) e-a2 (2.1) 

w = AJO (kr) e-“, 
VkfJ 

h=A~Jo(kr)e-k, l,-- 

where A and k are parameters, and J, and J, are Bessel functions. 

Let us construct the superposition 
m 

s m 

u = 2 A (k) Jl (kr) eeuZ/rJ dk, P.l=- 
s 

A (k) JI (kr) ewhz k dk (2.2) 
0 0 

cm 

s OD 

W = A (k) Jo (kr) e-“k dk, h = 20 
0 

s 

A (k) Jo (kr) emA2 dk 
0 

of particular solutions (2. l), stipulating that the third formula in (2.2) must satisfy con- 
dition (1.5). As the result, we obtain an equation for A (k). By reversing the Fourier- 
Bessel transformation we obtain 
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A (k) = 1 wa (r) Jo (kr) rdr (2.3) 

Integrals (2.2) are well convergent for z > 0 owing to the factor eshz appearing in 
the integrands. This makes it possible to obtain derivatives of expressions (2.2) with re- 

spect to r and a by differentiating under the integral sign. But then, by construction, 
formulas (2.2) and (2,3) yield-a solution of system (1.4) in the half-space z > 0. It will 
be readily seen that this solution satisfies not only the boundary condition on plane z = 0 

but also at infinity. Theoretically 

formulas (2,2) and (2.3) solve the 
boundary value problem defined by 
Eqs. (1.4) with boundary conditions 

(1.2) and (1.5). 

3, Function A(k) , which is the 

Fourier-Bessel transformation of the 
finite function zuo(r) , can be ex- 
panded in a power series in the neigh- 

borhood of zero: d(k) = ak* + 

Fig. 1 
bk”+2 -+... . According to [2] the 
asymptotic formula for the jet field 

can be obtained for 2 -+ .a and fixed r from (2.2) by substituting ak” for A(k) . It is 

of the form vu 
u =-i&y Il.?, v - _ _ aIll, w = aloe, h = &do0 

02 

(3.1) 

The adduced expressions show that the asymptotic formulas (3.1) yield a self-similar 
solution of system (1.4). The solution (3.1) is presented in Fig. 1 for II = 0; in this case 
a = Q/2%, where q is the volume flow rate of jet sources. Curves r-4 correspond to the 
following functions of a: 

5iT.ZU -2nv nh 
I----, 2-- 

2nw 

Q8 Q6” ’ 3-Q82” 4-40QS 

The self-similar solution for the jet field for n = 1 was obtained in [l]. It should be 

noted, however, that by virtue of (2.3) function A (k) is even, hence for z + 30 only self- 
similar integrals in (3.1) with even n can be asymptotic solutions of the boundary value 
problem(l.4),(1.2) and(1.5). 
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